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The stability of circular Poiseuille–Couette flow to axisymmetric disturbances is
investigated theoretically. First, the governing circular Orr–Sommerfeld equation for
linear perturbations is formulated and analysed asymptotically at large values of
the Reynolds number. The existence of multiple regions of instability is predicted
and their dependence upon radius ratio and inner cylinder velocity is determined
explicitly. These findings are confirmed when the linear problem is solved numerically
at finite Reynolds number and multiple neutral curves are found. The relevance of
these results to the thread injection of medical implants is discussed, and it is shown
how the linear modes are connected to nonlinear amplitude-dependent modes at high
Reynolds number that exist for O(1) values of the inner cylinder velocity.

1. Introduction and formulation of the governing equations
1.1. Preliminary discussion

The linear stability of the exact Navier–Stokes solution representing the axial-pressure-
gradient-driven flow through a cylindrical annulus (circular Poiseuille–Couette flow)
was first considered by Mott & Joseph (1968). They studied the case where the
inner cylinder is at rest and the disturbances are axisymmetric in nature. Neutral
curves (along which the growth rate of the disturbance is zero) were generated in
the Reynolds number−axial wavenumber plane for various values of the radius
ratio δ of the inner to the outer cylinder. It was found that there is a monotonic
increase in critical Reynolds number (based on gap width and maximum velocity)
with decreasing δ. There appears to have been little further significant activity on
this problem until the numerical study of Sadeghi & Higgins (1991). In the latter
paper, the inner cylinder is taken to move in the axial direction with a prescribed
constant speed V, and stability to both axisymmetric and non-symmetric disturbances
for a range of values of V and δ is considered numerically. For every choice of the
parameters that they investigated, Sadeghi & Higgins produced a unique neutral
curve. They also discovered that these curves retreated to infinity at a finite value
of V (the ‘cutoff’ velocity), dependent upon δ (and the azimuthal wavenumber for
non-symmetric disturbances).

The proposal of a unique neutral curve for non-zero values of V was somewhat
surprising as an earlier asymptotic study of plane Poiseuille–Couette flow by Cowley
& Smith (1985), and numerical studies carried out by the present author, suggest
that in the two-dimensional problem multiple neutral curves do coexist. This was
then confirmed in the circular case by the numerical work of Gittler (1993) for
axisymmetric disturbances. He found the existence of two neutral curves at non-zero
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V for the particular configuration δ = 0.5, in contradiction with the results of Sadeghi
& Higgins. One of the aims of the present work is to see whether asymptotic analysis
of the disturbance equations can lead to a prediction of the range of values of V and
δ over which multiple neutral curves exist and to an understanding of the physical
processes involved in the curve splitting.

Recently, there has been some renewed interest in this flow as it is relevant to the
‘thread injection’ of medical implants (Frei, Lüscher & Wintermantel 2000; Walton
2003). It was while working on this application that the present author decided that a
revisiting of the linear stability problem was in order. In fact, the stability properties
of this flow turn out to be so intricate that we confine ourselves in this paper to a
full account of the axisymmetric problem. We begin by analysing the linear stability
equations asymptotically at high Reynolds number R. There are three main reasons
for adopting this approach: (i) the stability equations are stiff at large R and numerical
results can often be at best unreliable; (ii) an asymptotic approach (Cowley & Smith
1985) proved fruitful for plane Poiseuille–Couette flow; (iii) an analysis for R � 1
will provide us with a knowledge of the crucial values of V and δ at which multiple
neutral curves exist, and this will serve as an all-important guide when carrying out
finite-Reynolds-number calculations.

The asymptotic study is presented in § 2. The approach we adopt and the scalings
we obtain are similar to those of Cowley & Smith, although the present problem is
a little more involved owing to the cylindrical geometry and the more complicated
basic flow. The main ideas remain the same, however, but we present our analysis in
more detail than the aforementioned authors, because their main interest centred on
how the disturbances behaved at O(1) values of V, whereas here all the asymptotic
results are found to be relevant when it comes to computing neutral curves at finite
Reynolds number in § 3. It is convenient to fix the radius ratio in these computations
and investigate how the neutral stability curve(s) for a given geometry change as V

is increased. Although we recover the neutral curves of Sadeghi & Higgins, we find
a great deal more besides: there are indeed multiple neutral curves (confirming the
results of Gittler 1993), sometimes co-existing at relatively low Reynolds number with
their shape (including whether they are open or closed) depending crucially on the
values of the parameters δ and V. We discuss the results and their relevance to the
medical application more fully in § 4, where it is also shown how they are connected
to nonlinear neutral modes as the disturbance amplitude is increased.

In the remainder of this section we introduce our notation and formulate the linear
stability problem.

1.2. The governing equations, non-dimensionalization and basic flow

The cylindrical polar coordinate system (a∗x, a∗r, θ) is used throughout this paper
where x, r and θ represent the non-dimensional coordinates in the axial, radial and
azimuthal directions, respectively, with a∗ the radius of the outer cylinder. Our focus
here is on axisymmetric flows with no swirl and the (x, r) velocity components
are written as (g∗a∗2/ρ∗ν∗)(u, v) where −4g∗ is the constant axial pressure gradient
applied to the flow through the annulus. The pressure is expressed as (g∗2a∗4/ρ∗ν∗2)p
where ρ∗ is the density of the incompressible fluid and ν∗ is its kinematic viscosity.
The time is written in the form (ρ∗ν∗/g∗a∗)t. These scalings enable us to pose the
governing unsteady axisymmetric Navier–Stokes equations in the non-dimensional
form:

∇ · u = 0, ut + (u · ∇)u = −∇p + R−1∇2u, R = g∗a∗3/ρ∗ν∗2, u = (u, v). (1.1)
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Figure 1. The basic Poiseuille–Couette flow U0(r) for various values of inner cylinder velocity
V and radius δ. (a) δ = 0.2; (b) δ = 0.4; (c) δ = 0.6; (d) δ = 0.8. In each case, six equally spaced
values of V are shown ranging from (left to right) V = 0 to V = 1 − δ2.

Note that other forms of non-dimensionalization are possible: for instance we could
base the Reynolds number upon flux or on maximum velocity (as in Sadeghi &
Higgins 1991). However, the fixed pressure gradient case is the most relevant for the
thread injection application and that is the main motivation for our choice here.

Our basic state is the axial flow between concentric cylinders with r =1 representing
the outer surface and r = δ the inner surface. The inner cylinder is moving in the
axial direction with non-dimensional velocity V (corresponding to the dimensional
velocity V ∗ = (g∗a∗2/ρ∗ν∗)V ). We seek a steady, unidirectional solution u = (U0(r), 0)
to the Navier–Stokes equations (1.1), and find

U0 = 1 − r2 +
(V − 1 + δ2)

ln δ
ln r (δ � r � 1). (1.2)

In this paper we study the linear and nonlinear stability of this basic solution for
various values of V and δ. Sketches of the basic flow for a range of the parameters
are shown in figure 1. We will concentrate on V > 0 as this is the regime of interest
for medical applications, but we will indicate later how the analysis is altered when
V < 0.

1.3. Formulation of the axisymmetric linear disturbance equations

A small axisymmetric travelling-wave disturbance of non-dimensional amplitude ∆ is
superimposed upon the basic flow and is expressed as the real part of

∆(û(r), v̂(r), p̂(r)) exp(iα(x − ct)). (1.3)

We will adopt a temporal approach to the stability problem, allowing the wavespeed
c to be complex, while the axial wavenumber α is required to be real. The governing
equations for the disturbance are obtained by adding the perturbation to the basic
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flow, substituting into (1.1) and equating coefficients of ∆, leading to the following
set of linear equations:

iαû + v̂′ + v̂/r = 0, (1.4a)

iα(U0 − c)û + v̂U ′
0 = −iαp̂ + R−1(û′′ + û′/r − α2û), (1.4b)

iα(U0 − c)v̂ = −p̂′ + R−1(v̂′′ + v̂′/r − v̂/r2 − α2v̂), (1.4c)

subject to the no-slip boundary conditions

û = v̂ = 0 on r = δ, r = 1. (1.5)

The pressure p̂ and streamwise perturbation û can be eliminated, leaving the
disturbance governed by the following cylindrical version of the Orr–Sommerfeld
equation (where φ = rv̂):

(U0 − c)(φ′′ − φ′/r − α2φ) − (U ′′
0 − U ′

0/r)φ

= (iαR)−1(φiv − 2φ′′′/r + (3/r2 − 2α2)φ′′ + (2α2/r − 3/r3)φ′ + α4φ), (1.6)

with the boundary conditions φ = φ′ = 0 on r = δ, r = 1. The latter form of the equation
is convenient for the numerical approach adopted in § § 2.4 and 3, while the primitive
form (1.4) is useful for a high-Reynolds-number asymptotic approach (§ 2.2).

2. The solution of the linear stability equations at large Reynolds number
The solution of (1.6) for given values of V and δ is a numerical one in general, but

some analytical progress can be made by assuming that the Reynolds number is large.
As mentioned above, the asymptotic analysis is not performed as an alternative to
numerical computation, but rather to complement it. First, in this section we consider
the inviscid limit of (1.6) before considering the viscous instability at high Reynolds
number.

2.1. Inviscid instability

When R = ∞, the Orr–Sommerfeld equation reduces to its Rayleigh counterpart,
namely

(U0 − c)

(
d

dr

(
φ′

α2r

)
− φ

r

)
− d

dr

(
U ′

0

α2r

)
φ = 0. (2.1)

The analogous result to Rayleigh’s inflection point criterion can be obtained by
multiplying by φ∗/(U0 − c) (with ∗ denoting complex conjugate), integrating across
the annulus, and applying the no-slip boundary conditions. We find that

ci

∫ 1

δ

(
d

dr

(
U ′

0

α2r

)
|φ|2

|U0 − c|2

)
dr = 0, (2.2)

where ci denotes the imaginary part of c. Thus, inviscid instability is only possible if
(U ′

0/α
2r)′ changes sign somewhere in the range δ � r � 1. It is easy to show that for

the basic flow (1.2) this quantity is, in fact, constant and therefore inviscid stability
is assured. Incidentally, this argument can also be extended to show that the flow is
also inviscidly stable to non-axisymmetric disturbances; in such cases α2 is replaced
by α2 + N 2/r2, where N is the azimuthal wavenumber of the disturbance.

Now that we have established that any linear instability of (1.2) is viscous in nature,
we consider the viscous problem at high Reynolds number.
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2.2. Viscous instability

As the Reynolds number is assumed large, viscous effects will be confined to the
proximity of the cylindrical walls. It is therefore useful to give here the near-wall
behaviour of the basic flow for small values of V . Letting V = ε2V0, we have

U0 = U00 + ε2U01, U00 = 1 − r2 − (1 − δ2)
ln r

ln δ
, U01 = V0

ln r

ln δ
. (2.3)

As r → 1 − :

U00 ∼ λ
(0)
+ (1 − r) + λ

(10)
+ (1 − r)2, U01 ∼ λ

(1)
+ (1 − r), (2.4)

with

λ
(0)
+ = 2 +

(1 − δ2)

ln δ
> 0, λ

(10)
+ = −1 +

(1 − δ2)

2 ln δ
< 0, λ

(1)
+ = − V0

ln δ
> 0.

As r → δ + :

U00 ∼ λ(0)
− (r − δ) + λ(10)

− (r − δ)2, U01 ∼ V0 + λ(1)
− (r − δ), (2.5)

with

λ(0)
− = −2δ − (1 − δ2)

δ ln δ
> 0, λ(10)

− = −1 +
(1 − δ2)

2δ2 ln δ
< 0, λ(1)

− =
V0

δ ln δ
< 0.

These forms will come in useful at various points in the analysis.

2.2.1. Lower-branch analysis

When V = 0, by analogy with the corresponding stability analysis for other parallel
flows and from previous numerical studies, we anticipate that there will be a unique
neutral stability curve. Typically, on the lower branch of such a curve at high Reynolds
number, the two critical layers (where the basic flow is equal to the phase speed c of
the disturbance) will be embedded within viscous wall layers and we anticipate that
the mode behaviour will be described by a three-zone structure consisting of a core
region and two wall layers. A sketch of the asymptotic structure is shown in figure 2.
If V is non-zero, but less than or of the same magnitude as c, we would expect this
structure to remain essentially intact and so we seek an asymptotic solution to (1.4)
of this form when R � 1 and

V = ε2V0, ε 	 1,

with ε to be determined in terms of the Reynolds number.
(i) Core region I. Here the basic flow is much larger than the wavespeed of the

perturbation and the dynamics are predominantly inviscid. The disturbance expansion,
to leading order, is

û = F0, v̂ = εG0, p̂ = ε2P0, α = εα0, c = ε2c0. (2.6)

Substituting these expressions into the disturbance equations, with U0 given by (2.3)
we obtain a set of inviscid balances with solutions

F0 = A0U
′
00/r, G0 = −iα0A0U00/r, P0 = P̂0 + α2

0A0I (r), (2.7)

where the integral I (r) is defined by

I (r) =

∫ 1

r

U 2
00/r dr, (2.8)

(and can be calculated analytically), while the constant A0 is an undetermined
amplitude factor. The pressure constant P̂0 in (2.7) can be chosen without loss
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Viscous Wall Layer III+ R-2/7

I

Figure 2. The high-Reynolds-number asymptotic structure of the lower-branch modes.

of generality and its value does not affect the eigenrelation to be derived below. Using
the asymptotic forms (2.4), (2.5) for U0 we see that as r → 1:

F0 → −A0λ
(0)
+ , G0 ∼ −iα0A0λ

(0)
+ (1 − r), P0 → P̂0, (2.9)

while as r → δ:

F0 → A0λ
(0)
− /δ, G0 ∼ −iα0A0λ

(0)
− (r − δ)/δ, P0 → P̂0 + α2

0A0I (δ). (2.10)

(ii) The inner viscous layers II+, II−. In these regions (of thickness h say) the
inertia term iα(U0 − c)û, the pressure term iαp̂ and the viscous term R−1û′′ must all
be comparable in size. This implies the balance

εh ∼ ε3 ∼ R−1h−2,

resulting in the scalings

ε = R−1/7, α = R−1/7α0, c = R−2/7c0, V = R−2/7V0, (2.11)

identical to those found for plane Poiseuille–Couette flow by Cowley & Smith (1985).
The scaling of R−2/7 in V allows the effects of the inner cylinder’s motion to penetrate
within the lower viscous layer (II−) at r = δ. Having established the magnitude of
the various parameters we can write down the equations governing the behaviour in
the upper and lower viscous wall layers. In the upper layer (II+) we have to leading
order

û = u+, v̂ = −ε3v+, p̂ = ε2p+, r = 1 − ε2y+, U0 = ε2λ
(0)
+ y+,



Stability of circular Poiseuille–Couette flow 175

while in the lower layer (II−) the analogous expansions are

û = u−, v̂ = ε3v−, p̂ = ε2p−, r = δ + ε2y−, U0 = ε2
(
λ(0)

− y− + V0

)
.

The corresponding equations and boundary conditions are

iα0u+ + v′
+ = 0, (2.12a)

iα0

(
λ

(0)
+ y+ − c0

)
u+ + v+λ

(0)
+ = −iα0p+ + u′′

+, (2.12b)

p+ = P̂0, (2.12c)

u+ = v+ = 0 on y+ = 0, u+ → −A0λ
(0)
+ as y+ → ∞, (2.12d)

in II+, and

iα0u− + v′
− = 0, (2.13a)

iα0

(
λ(0)

− y− + V0 − c0

)
u− + v−λ

(0)
− = −iα0p− + u′′

−, (2.13b)

p− = P̂0 + α2
0A0I (δ), (2.13c)

u− = v− = 0 on y− = 0, u− → A0λ
(0)
− /δ as y− → ∞, (2.13d)

in II− near the lower wall at r = δ. The solutions for p+, p− arise from the fact that
the pressure is constant to leading order throughout both wall layers. The solution to
these linear wall-layer problems is well known (e.g. Smith 1979) and leads us to the
relations

α2
0p+ =

(
iα0λ

(0)
+

)5/3 Ai′(ξ+)

κ(ξ+)
A0, α2

0p− = −
(
iα0λ

(0)
−

)5/3 Ai′(ξ−)

δκ(ξ−)
A0, (2.14a, b)

where Ai is the Airy function, κ(ξ ) =
∫ ∞

ξ
Ai(ξ ) dξ , and ξ+, ξ− are given by

(ξ+, ξ−) = −i1/3(s+, s−), with s+ =
α0c0(

α0λ
(0)
+

)2/3
, s− =

α0(c0 − V0)(
α0λ

(0)
−

)2/3
. (2.15)

We note that s+ > 0, while s− can be positive or negative. Subtracting (2.14a) from
(2.14b), and using the expressions (2.12c), (2.13c) for p+, p− we obtain the lower-
branch eigenrelation

−α
7/3
0 I (δ) =

(
λ

(0)
+

)5/3
g(s+) +

1

δ

(
λ(0)

−
)5/3

g(s−), (2.16)

where

g(s) = i5/3Ai′(ξ )/κ(ξ ), ξ = −i1/3s. (2.17)

In order to determine the possible neutral solutions for α0 for given V0 and δ it
is necessary to solve (2.16) numerically. This is most easily accomplished by first
eliminating the explicit α0-dependence in the eigenrelation by noting that

α
1/3
0 V0 =

(
λ

(0)
+

)2/3
s+ −

(
λ(0)

−
)2/3

s−, (2.18)

and using this expression to substitute for α0. As a result, the eigenrelation becomes

V 7
0

((
λ

(0)
+

)5/3
g(s+) +

1

δ

(
λ(0)

−
)5/3

g(s−)

)
+

((
λ

(0)
+

)2/3
s+ −

(
λ(0)

−
)2/3

s−

)7

I (δ) = 0. (2.19)

For given values of the parameters V0 and δ, we can plot (as functions of s+ and
s−) contours along which the real and imaginary parts of the left-hand side of (2.19)
are zero. The intersection of these contours identifies the neutral values of s+, s− and
hence determines the corresponding neutral values of α0 from (2.18).
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Figure 3. Solutions of the lower-branch eigenrelation (2.19) with δ =0.95 for various values
of inner cylinder velocity V0. (a) V0 = 0.08; (b) V0 = 0.095; (c) V0 = 0.2; (d) V0 = 0.42; (e) V0 = 5.
Along the dashed curves the imaginary part of the left-hand side of (2.19) is zero, while along
the bold curves the real part is zero.

In figure 3 we show results for δ = 0.95, and examine the contours as V0 increases.
When V0 is in the range 0 � V0 < 0.095, there is just one intersection of the contours
and hence one lower branch mode. When V0 
 0.095, two new modes form (figure 3b)
and we see that as V0 is further increased, one of these intersection points moves
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Figure 4. Solutions of the lower-branch eigenrelation (2.19) with δ = 0.7 for: (a) V0 = 0.6;
(b) V0 = 1.4; (c) V0 = 5. Notation as in figure 3.

in such a way that s+ → ∞ as V0 → ∞, with s− remaining finite and positive (i.e.
α0 → ∞), implying that the wavelength of this mode is shortening with increasing
V . At around V0 
 0.42, a further two modes are created (figure 3d) and all four of
these solutions persist as V0 → ∞. We now see how this sequence of events is modified
when δ is decreased. Figure 4 shows the corresponding situation for δ = 0.7. In this
case, there is a unique solution until V0 is increased to about 0.6 (figure 4a), at which
point two new modes form. Once again, one of these modes shortens its wavelength
as V0 → ∞. No further modes are created; in fact, we only observe the creation of the
second pair of modes when δ � 0.92. Figure 5 shows the corresponding situation for
δ = 0.4. This time, only the V0 = 0 mode exists (no other modes are created) with this
mode shortening its wavelength as V0 → ∞. We found that this scenario was typical
for the range 0 <δ � 0.5. It is already clear that the behaviour of the modes and
their dependence upon the values of V and δ is a complicated issue. To help clarify
the situation (and to determine the ultimate fate of these modes as V is increased)
it is instructive to examine the eigenrelation (2.19) in the limit V0 → ∞. In this limit
(assuming that s+ and s− remain O(1)), it is clear that the eigenrelation simplifies to(

λ
(0)
+

)5/3
g(s+) +

1

δ

(
λ(0)

−
)5/3

g(s−) 
 0. (2.20)

Figure 6 shows the corresponding contours for selected values of δ between 0.95 and
0.4. These results reinforce the conclusions drawn above, namely that in the limit
V0 → ∞ we have four such solutions for 0.92 <δ < 1, two solutions for 0.52 <δ < 0.92,

and no solutions for δ < 0.52. These modes all have a wavelength which is increasing,
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Figure 5. Solutions of the lower-branch eigenrelation (2.19) with δ = 0.4 for: (a) V0 = 1.5;
(b) V0 = 3; (c) V0 = 5. Notation as in figure 3.

according to

α0 ∼
((

λ
(0)
+

)2/3
s+ −

(
λ(0)

−
)2/3

s−

)3

V −3
0 as V0 → ∞, (2.21)

from (2.18). In addition to these solutions, we also have the solution for which s+ → ∞
with s− remaining O(1) as V0 → ∞. It can be shown that in this limit

g(s) ∼ −s + eiπ/4s−1/2 as s → ∞. (2.22)

Thus, to leading order g(s+) is real and therefore g(s−) must also be real to balance
the terms in (2.19). This is only possible if

s− = s0 
 2.2972, (2.23)

the unique (finite) root of Im(g) = 0. After substitution for s+ from (2.15) the
appropriate limiting form of the eigenrelation (2.19) is found to be

−α
7/3
0 I (δ) ∼ −λ

(0)
+

((
λ(0)

−
)2/3

s0 + α
1/3
0 V0

)
+

1

δ

(
λ(0)

−
)5/3

g(s0). (2.24)

Upon rearrangement, we obtain the result

V0 ∼
(
I (δ)

/
λ

(0)
+

)
α2

0 + O
(
α

−1/3
0

)
as V0 → ∞. (2.25)

This demonstrates explicitly how this mode shortens its wavelength as V0 is increased.
In view of the fact that for this mode the quantity s− remains O(1) and positive, it is
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Figure 6. Solutions of the lower-branch eigenrelation (2.20) for asymptotically large V0, for
the following values of δ: (a) 0.95; (b) 0.92; (c) 0.7; (d) 0.52; (e) 0.5; (f ) 0.4. Along the dashed
curves the imaginary part of the left-hand side of (2.20) is zero, while along the bold curves
the real part is zero.

evident that the wavespeed also increases, with

c0 ∼ V0 +

(
λ

(0)
+

I (δ)

)−1/6 (
λ(0)

−
)2/3

s0V
−1/6
0 as V0 → ∞, (2.26)

from (2.15), (2.25). For this mode, as V increases, the critical layer is moving away
from the upper wall, while the lower critical layer remains embedded within its viscous
layer. Thus, the upper part of the structure is turning into an upper-branch-type mode
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Figure 7. The nine zone asymptotic structure of the upper-branch mode.

while the lower part still retains the lower-branch structure. We will investigate this
hybrid mode further in § 2.2.3.

Thus, as V0 → ∞ we have two types of mode. The first type has a wavelength that
increases as V0 increases. The number of such solutions is either four, two or none
depending on the value of δ. For these modes, the critical layers remain embedded
within the viscous wall layers and the asymptotic structure remains intact until V0

increases to order R2/7 (i.e. V becomes O(1)). From the asymptotic behaviour (2.21)
and the scaling (2.11), we see that in this limit the disturbance wavelength increases
to O(R), at which stage the further evolution with V becomes a numerical problem
(to be tackled in § 2.4). The second type of mode (of which there is always one for all
values of δ) has a wavelength which decreases as V0 increases, and behaves according
to (2.25). We will see later that the structure associated with this mode breaks down
before V becomes O(1), although this can be extended by including nonlinear effects.
Before we can study this mode further it is necessary to examine the structure of the
upper-branch mode at small values of V.

2.2.2. Upper-branch analysis

The aim here is to set out the structure of the upper-branch mode for this flow
when the inner cylinder velocity is small and to identify the distinguished scaling for
V, beyond which this structure breaks down. The distinguishing feature of the upper-
branch behaviour is that the typical value of the disturbance wavespeed is larger
than that on the lower branch and as a result the critical layers are distinct from the
viscous wall layers. This leads to a nine-zone structure formally (sketched in figure 7).
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The structure is not quite as complicated as it may first appear, however, as eight of
these regions occur in upper wall/lower wall pairs (denoted by +/− subscripts). As
in the lower-branch case, there is an inviscid core region (I) in which the basic flow
velocity is much larger than the disturbance wavespeed. This is surrounded above
and below by an inviscid shear layer (regions II+, II−), in which the basic near-wall
shear flow is of the same order of magnitude as the wavespeed. The viscous critical
layers (required to smooth out the singularities in II+, II−) are sited within their
respective shear layers. Finally, in order that the disturbance satisfies no-slip on both
cylinders, we require viscous wall layers (III+, III−). Once again, we seek a solution
with V 	 1, R � 1 and write

V = ε2V0, U0 = U00 + ε2U01,

(with U00, U01 given in (2.3)). The small parameter ε is again to be determined in
terms of the Reynolds number.

(i) Inviscid core region I. First, we consider the core region where the dynamics are
exactly as in the lower-branch case. It is necessary, however, to calculate higher-order
terms in the expansions for the normal velocity and pressure. The solution expands
in the familiar form

û = F0 + · · · , v̂ = εG0 + ε3G1 + · · · , p̂ = ε2P0 + ε4P1 + · · · , (2.27a–c)

α = εα0 + · · · , c = ε2c0 + · · · . (2.27d, e)

The solutions for F0, G0 and P0 are as given in (2.7), with A0 and P̂0 taken to be real
without loss of generality, while the correction terms G1 and P1 may be written in
the form

G1 = −iα0A1

U00

r
+ purely imaginary terms, (2.28a)

P1 = P
(1)
+ + α2

0A1I (r) + purely real terms. (2.28b)

Here, the unknown constants A1, P
(1)
+ are complex. Examining the behaviour of these

solutions as the walls are approached, we find that (2.9), (2.10) continue to hold, and

Im(P1) → Im
(
P

(1)
+

)
as r → 1,

Im(P1) → Im
(
P

(1)
+

)
+ α2

0Im(A1)I (δ) as r → δ.
(2.29)

From this latter result, we may deduce that the net jump in the imaginary part of P1

across the core is given by

[Im(P1)]
+
− = −α2

0I (δ)Im(A1). (2.30)

(ii) The inviscid shear region II+. As mentioned above, the core region matches, above
and below, to an inviscid region in which the first term in the basic flow expansion
(2.3) becomes comparable with the disturbance wavespeed c: clearly this occurs at
a distance of O(ε2) from each wall. In the upper region II+ the appropriate flow
expansions are

U0 = ε2λ
(0)
+ Y+ + ε4

(
λ

(1)
+ Y+ + λ

(10)
+ Y 2

+

)
+ · · · , r = 1 − ε2Y+, (2.31a, b)

û = u
(0)
+ +ε2u

(1)
+ +· · · , v̂ = −ε3v

(0)
+ −ε5v

(1)
+ −· · · , p̂ = ε2p

(0)
+ +ε4p

(1)
+ +· · · , (2.31c–e)

with α and c expanding as in (2.27). The resulting inviscid balances possess the simple
solutions:

u
(0)
+ = −A0λ

(0)
+ , v

(0)
+ = iα0A0ζ+ − iα0P̂0/λ

(0)
+ , p

(0)
+ ≡ P̂0, p

(1)
+ ≡ P

(1)
+ , (2.32)
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upon matching to the core region I . For convenience, here the solutions are expressed
in terms of the variable

ζ+ = λ
(0)
+ Y+ − c0. (2.33)

Applying the inviscid condition of zero normal flow on r =1 to the expression for v
(0)
+ ,

we obtain

A0c0 +
P̂0

λ
(0)
+

= 0, (2.34)

providing a first pressure–displacement relation. Also of importance here is the
solution for the second term in the normal velocity expansion which may be written
in the form

v
(1)
+ = iα0A

(1)
+ ζ+ +imaginary terms− iα0P

(1)
+

λ
(0)
+

− iα0P̂0

λ
(0)
+

(
2λ(10)

+

λ
(0)2
+

+
1

λ
(0)
+

)
ζ+ ln ζ+, (2.35)

given here for ζ+ > 0, with the complex constant A
(1)
+ unknown. It is the final logar-

ithmic term which demonstrates the irregular behaviour that is smoothed out by the
thin linear critical layer present at ζ+ = 0. The dynamics of such a layer are well
understood (Lin 1955; Stuart 1963; Reid 1965) and the only aspect of the critical-
layer dynamics that concerns us here is the phase shift of −π that arises upon crossing
it. The effect of this is that the solution for v

(1)
+ when ζ+ < 0 is simply given by (2.35),

but with ln ζ+ replaced by ln |ζ+| − iπ. From matching the real part of the first term
in (2.35) as ζ+ → ∞ with the real part of the first term in the expression (2.28a) for
G1 as r → 1, we obtain

Im
(
A

(1)
+

)
= Im(A1). (2.36)

In order to determine the size of ε in terms of the Reynolds number, we need to
match the behaviour in the inviscid shear region below the critical layer (i.e. for
ζ+ < 0) to the flow in the viscous wall layer (III+) at r = 1. In this latter region, the
basic flow is very small and the dominant balance in the governing equation (1.4b) is
between −iαcû and R−1q−2û where q is the thickness of the layer. Since αc ∼ O(ε3),
we see that q ∼ O(R−1/2ε−3/2). The size of ε is then determined by matching the
normal velocities between regions III+ and II+ . The streamwise perturbation within
region III+ must be of O(1) to match with II+, and hence, by continuity, the normal
velocity in III+ must be O(εq). Matching this to the term v

(1)
+ in (2.31d) we have the

order of magnitude balance εq ∼ ε5 and hence we deduce

ε = R−1/11, (2.37)

for the upper branch scaling, as for plane Poiseuille–Couette flow. The terms involving
the normal velocity must balance exactly, not only in order of magnitude, and this
requires more detailed analysis. Having established the scaling for ε, we now write
down the expansions in the wall layer III+.

(iii) Viscous wall layerIII + . To leading order, we have

û = u+, v̂ = −ε5v+, p̂ = ε2p̂0, r = 1 − ε4y+, (2.38)
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and substitution into the linear disturbance equations leads to a set of viscous equa-
tions with solutions

u+ =
P̂0

c0

(1 − exp(−m+y+)), v+ = − iα0P̂0

c0

(
y+ +

exp(−m+y+)

m+

− 1

m+

)
,

p̂0 ≡ P̂0, m+ =
(

1
2
α0c0

)1/2
(1 − i),

(2.39)

with the first purely imaginary term in v+ matching automatically to the corresponding

term in the solution for v
(0)
+ in II+, in view of the pressure–displacement relation (2.34).

Matching the real part of v+ as y+ → ∞ with the real part of v
(1)
+ as ζ+ → −c0 (and

taking into account the phase shift of −π) we obtain

− P̂0

c0(2α0c0)1/2
= c0Im(A1) +

Im
(
P

(1)
+

)
λ

(0)
+

+
P̂0

λ
(0)
+

(
2λ(10)

+

λ
(0)2
+

+
1

λ
(0)
+

)
(πc0), (2.40)

where we have used expression (2.36) to eliminate A
(1)
+ .

(iv) The lower layers. In order to complete the analysis and derive the upper-branch
eigenrelation, we need to consider the corresponding asymptotic regions near the
inner cylinder. The details are very similar to those presented for the upper regions,
the only differences being that (i) the inner cylinder’s scaled velocity V0 appears in the
equations for regions II− and III− and (ii) because the surface of the inner cylinder
is given by r = δ there are extra factors involving this parameter. The main results
are as follows. First, from applying the condition of tangential flow to the solution in
II−, the analogous result to (2.34) is

A0

δ
(V0 − c0) +

P̂0 + α2
0A0I (δ)

λ
(0)
−

= 0. (2.41)

Eliminating A0 between (2.34) and (2.41), we obtain a first relation between c0 and
α0, namely,

c0 =

(
V0

δ
+

α2
0I (δ)

λ
(0)
−

)(
1

δ
+

λ
(0)
+

λ
(0)
−

)−1

. (2.42)

Next, from matching the normal velocity between the core I and the inviscid shear
region II−, we obtain the result

Im
(
A(1)

−
)

= −Im(A1)/δ, (2.43)

where A
(1)
− is the analogous constant to A

(1)
+ in II − . Finally, matching the real parts

of the normal velocity between region II− and the viscous wall layer III− leads to
the expression

−
P̂0

(
1 − α2

0I (δ)
/(

c0λ
(0)
+

))
(c0 − V0)(2α0(c0 − V0))1/2

= −(c0 − V0)
Im(A1)

δ
+

Im
(
P

(1)
−

)
λ

(0)
−

+
P̂0

(
1 − α2

0I (δ)
/(

c0λ
(0)
+

))
λ

(0)
−

(
2λ(10)

−

λ
(0)2
−

− 1

λ
(0)
− δ

)
π(c0 − V0), (2.44)

(cf. (2.40)), where the complex constant P
(1)
− is the second term in the pressure

expansion within region II − . We now have sufficient information to determine the
upper-branch eigenrelation. Earlier, in (2.30), we found the net jump in pressure
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across the core region I ; this implies that

Im
(
P

(1)
+

)
− Im

(
P (1)

−
)

= −α2
0I (δ)Im(A1). (2.45)

We can now eliminate the unknown imaginary parts of P
(1)
+ , P

(1)
− , A1 by taking an

appropriate linear combination of equations (2.40), (2.44) and using expression (2.42)
for c0 and (2.45). After some manipulation we obtain

λ
(0)
+

c0(2α0c0)1/2
−

(
1 − α2

0I (δ)

c0λ
(0)
+

)
λ

(0)
−

(c0 − V0)(2α0(c0 − V0))1/2
+ c0π

(
2λ(10)

+

λ
(0)2
+

+
1

λ
(0)
+

)

− (c0 − V0)π

(
2λ(10)

−

λ
(0)2
−

− 1

λ
(0)
− δ

) (
1 − α2

0I (δ)

c0λ
(0)
+

)
= 0. (2.46)

This is to be solved in conjunction with (2.42) and gives α0 and c0 as functions of V0

and δ. Figure 8 shows the results of solving (2.42), (2.46) for α0. Details of the method
of solution are given in Appendix A. A unique solution for α0 is found for a given V0

and δ. Typically, α0 increases with increasing δ (although when δ is very small there
is also an increase in α0 with decreasing δ). As V0 is increased from zero, the value
of α0 rises slightly, falls and then increases monotonically with α0 → ∞ as V0 → ∞ for
all values of δ. Clearly, in this limit the upper-branch structure is breaking down,
with the wavelength of the neutral mode shortening. This limit can be investigated
further by examining analytically the upper-branch eigenrelations (2.42), (2.46) with
V0 asymptotically large. We find the following results:

α0 ∼
(

λ
(0)
+

I (δ)

)1/2

V
1/2
0 + β1V

−5
0 , c0 ∼ V0 + β2V

−9/2
0 as V0 → ∞, (2.47a, b)

with the constants β1, β2 given by

β1 = − λ
(0)2
− λ

(0)
+

16π2δ6 ln δ
(1−δ2+2δ2 ln δ)2, β2 =

I (δ)1/2λ
(0)2
− λ

(0)3/2
+

8π2(1 − δ2)2δ4
(1−δ2+2δ2 ln δ)2, (2.48)

where we have made some use of expressions (2.4), (2.5) for the skin-friction and
curvature coefficients of the basic flow. These results are consistent with the numerical
solution of the eigenrelation presented above. Since c0 → V0+ as V0 → ∞, it is clear
that for this upper branch mode the lower critical layer is moving towards the wall
at r = δ. Eventually, once V0 has increased sufficiently, the critical layer will move
inside the viscous wall layer III−, forming a lower-branch-type structure. While this
is happening, we would expect the upper layers to be essentially unaffected, retaining
their upper branch character. We therefore anticipate the formation of a ‘hybrid’
mode and in the next section we deduce the magnitude of V at which this new
structure comes into play and we investigate the behaviour of the mode on this new
scaling. We will also see that the lower-branch mode with the asymptotic behaviour
identified in (2.25) also moves onto this new scaling at the same order of magnitude
of V .

2.2.3. The hybrid scaling

As mentioned above, we expect that when V0 is sufficiently large the lower critical
layer in the upper-branch structure will move inside the viscous wall layer. Within
this lower-branch-type wall layer we require the disturbance wavespeed c to be
the same order of magnitude as the basic flow which takes the near-wall form
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Figure 8. Solution of the upper branch eigenrelations (2.42), (2.46).

λ
(0)
− (r − δ) + R−2/11V0. In view of this, the term (U0 − c) in (1.4b) becomes

U0 − c ∼ λ(0)
− (r − δ) − R−2/11(c0 − V0) ∼ λ(0)

− (r − δ) − R−2/11β2V
−9/2
0 ,

upon use of the asymptotic result (2.47b). For the two terms to be in balance we
therefore require the layer to be of thickness y ∼ (r − δ) ∼ R−2/11V

−9/2
0 . The crucial
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Figure 9. The asymptotic structure of the hybrid modes.

balance within the layer is between the term α(U0 − c) and the viscous operator
R−1∂2/∂y2. Recalling the upper-branch scaling (2.27d), (2.37) for α and the asymptotic
form (2.47b) we therefore have the parameter balance

R−1/11V
1/2
0 R−2/11V

−9/2
0 ∼ R−1

(
R−2/11V

−9/2
0

)−2
,

which leads to the scalings

V0 ∼ R4/143, α0 ∼ R2/143, c0 ∼ R4/143,

or, in terms of the original variables, a new regime in which

V = R−2/13V 0, α = R−1/13α0 + R−3/13α1 + · · · ,
c = R−2/13c0 + R−4/13c1 + · · · , c0 = V 0.

}
(2.49)

Again, the same scalings hold in the planar case (Cowley & Smith 1985). We now
analyse each of the asymptotic regions on this new scaling in turn, with the ultimate
aim of determining the eigenrelation governing the behaviour of the modes with this
scaling, and finding, if it exists, the cutoff velocity beyond which these modes are no
longer neutral. The different regions involved are sketched in figure 9.

(i) The core region I. Here the scalings are exactly as on the lower and upper
branches, i.e. we have

û = F0 + · · · , v̂ = εG0 + ε3G1 + · · · , p̂ = ε2P0 + ε4P1 + · · · , (2.50)
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but with the small parameter ε now given by

ε = R−1/13. (2.51)

The same inviscid balances hold in the core as before, with the solutions and asymp-
totic behaviour given in (2.7), (2.28), (2.9), (2.10).

(ii) Upper inviscid shear region II+. This is largely unchanged from the corres-
ponding region in the upper-branch structure with the expansions now in powers of
R−1/13. The solutions for the velocity perturbations and the pressure are precisely
as given in (2.32) (with α0, c0 replacing α0, c0) and the relations (2.34), (2.36) also
continue to hold. There is a linear critical layer embedded in this region across which
a −π phase shift is induced, and as a result we still obtain the result

Re
(
v

(1)
+

)
→ α0c0Im

(
A

(1)
+

)
+

α0Im
(
P

(1)
+

)
λ

(0)
+

+
α0P̂0

λ
(0)
+

(
2λ(10)

+

λ
(0)2
+

+
1

λ
(0)
+

)
c0π as y+ → ∞.

(2.52)

(iii) Upper wall layer III+. The balances here remain as for the upper branch
structure although the layer is now reduced in thickness to O(R−5/13) in view of
the increase in the disturbance frequency αc relative to the upper branch scaling. A
consequence of the reduction in thickness is that the real part of the normal velocity
here is now smaller in magnitude (by a factor ε) than the corresponding quantity in
II+. There is therefore a mismatch in normal velocities between these layers, resulting
in the expression

c0Im(A1) +
Im

(
P

(1)
+

)
λ

(0)
+

+
P̂0

λ
(0)
+

(
2λ(10)

+

λ
(0)2
+

+
1

λ
(0)
+

)
c0π = 0, (2.53)

cf. (2.40).
(iv) Lower inviscid shear region II−. Here the upper-branch wall layer, shear region

and critical layer have merged to form a single zone in which

r = δ + ε4Y−, û = u(0)
− + · · · , v̂ = ε5v(0)

− + · · · , p̂ = ε2p(0)
− + ε4p(1)

− + · · · . (2.54)

Substitution into the linear disturbance equations (1.4) reveals that

p(0)
− ≡ 0, (2.55)

and therefore from the core solution (2.10) and the pressure–displacement relation
(2.34), we deduce that

P̂0 = −α2
0A0I (δ) = −λ

(0)
+ A0c0, (2.56)

thus fixing the leading-order neutral wavenumber in terms of the scaled inner cylinder
velocity as

α0 =

(
λ

(0)
+

I (δ)

)1/2

V
1/2

0 , (2.57)

(since c0 = V 0), which of course matches back to the upper-branch regime via the
asymptote (2.47a). In order to determine the eigenrelation for the hybrid scaling, we
need to investigate the leading-order balances within this layer. They are

iα0u
(0)
− + v

(0)′
− = 0,

iα0

(
λ

(0)
− Y− − c1

)
u

(0)
− + λ

(0)
− v

(0)
− = −iα0p

(1)
− + u

(0)′′
− , p

(1)′
− = 0,

}
(2.58)
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with

u(0)
− = v(0)

− = 0 on Y− = 0, u(0)
− → A0λ

(0)
− /δ as Y− → ∞. (2.59)

In addition, from the core result (2.30) we have

Im
(
p(1)

−
)

= Im
(
p

(1)
+

)
+ α2

0Im(A1)I (δ). (2.60)

Equations (2.58) with boundary conditions (2.59) constitute a standard ‘lower-deck’
problem which can easily be solved as in the lower-branch case to yield

−α2
0p

(1)
− =

(
iα0λ

(0)
−

)5/3 Ai′(ξ−)

κ(ξ−)

A0

δ
, (2.61)

ξ− = − i1/3α0c1(
α0λ

(0)
−

)2/3
≡ −i1/3s−, (2.62)

with notation as in § 2.2.1. Taking the imaginary part of this expression and using
(2.60), (2.53) and (2.56), we finally obtain the hybrid eigenrelation

V
13/6

0 = −
(

λ
(0)
+

I (δ)

)−1/6 (
λ

(0)
−

)5/3

πδ

(
2λ(10)

+

λ
(0)
+

+ 1

)−1

Im(g(s−)), (2.63)

with g(s) given in (2.17). For given V 0, the leading-order neutral wavenumber α0

can be calculated from (2.57), with (2.63) giving the corresponding value(s) for the
wavespeed correction c1. Figure 10 shows c1 plotted versus V 0 for various values of
δ from the numerical solution of (2.63). It can be seen that for a given δ and for V 0

up to a critical value (V c, say), there are typically two solutions, although there is a
small range of V 0 where there are four modes. For V 0 > V c, there are no solutions
on this scaling and thus V c represents a scaled cutoff velocity for modes of this type.
The origins of the two typical modes on this scaling can be traced back to the upper
and lower branch structures by analysing the limit V 0 → 0. In this limit, (2.63) implies
that Im(g(s−)) → 0, leading to two possibilities: (i) s− → s0 or (ii) s− → ∞. If (i) holds
then we have from (2.62) and (2.23):

c1 ∼
(

λ
(0)
+

I (δ)

)−1/6 (
λ(0)

−
)2/3

s0V
−1/6

0 as V 0 → 0. (2.64)

From comparison with the asymptotic expression (2.26), we can see that this mode is
in fact the continuation of the lower-branch solution which shortened its wavelength
on that scaling as V was increased. On the other hand, if (ii) holds we can use the
asymptotic form (2.22) for g(s), in which case the eigenrelation (2.63) reduces, after
some manipulation, to:

c1 ∼ β2V
−9/2

0 as V 0 → 0, (2.65)

with β2 given in (2.48). It can be seen therefore by comparison with (2.47b) that this
mode is the continuation of the upper-branch mode on the new scaling. These two
modes form the upper and lower branches of a single neutral curve on the hybrid
scaling, as can be seen in figure 10.

2.3. Summary of the asymptotic results

We have analysed the linear neutral stability of circular Couette–Poiseuille flow at
asymptotically large Reynolds number and investigated the behaviour of the neutral
modes as the inner cylinder velocity is increased. The main findings are as follows.
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Figure 10. Solution of the eigenrelation (2.63) for the hybrid scaling. The arrows in (a)
indicate how the two branches of each neutral curve match back to the upper branch (UB)
and lower branch (LB) scalings.

First, we showed in § 2.1 that the flow is inviscidly stable and therefore any instability
must be viscous in nature. We then moved on to discuss viscous instabilities in § 2.2.

When the inner cylinder is moving sufficiently slowly, there are instability modes
described by a lower-branch scaling (§ 2.2.1). The number of modes varies with radius
ratio δ and inner cylinder velocity V . When V = 0, there is a single solution for
all values of δ. When 0.92 � δ < 1, two extra pairs of solutions are created as V is
increased on this scaling. One of these solutions eventually ‘breaks out’ of this scaling
when V increases to O(R−2/13) and moves onto the hybrid scaling (§ 2.2.3) where it
forms the lower branch of a single neutral curve. This mode then vanishes on the
new scaling at the cutoff velocity R−2/13V c. The other four solutions continue to
be described by the original lower-branch scaling until V ∼ O(1). Their subsequent
evolution will be described in the next section. When 0.47 <δ < 0.92, the same events
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occur as above but now only one extra pair of solutions are generated on the
lower-branch scaling, and when δ < 0.47, no extra solutions are generated at all.

A separate mode evolves on the upper-branch scaling (§ 2.2.2) which holds until
V ∼ O(R−2/13). No extra solutions are generated as V is increased and the mode
eventually ‘breaks out’ of this scaling, forming the upper branch of a single neutral
curve on the hybrid scaling. The mode survives on this new scaling until the cutoff
velocity R−2/13V c is reached where the O(1) quantity V c increases with decreasing δ.

In order to complete our description of the behaviour of the neutral modes at high
Reynolds number, it is necessary to consider the fate of the lower-branch solutions
that do not experience a cutoff on that scaling. Depending on the value of δ there
can be either one or two pairs of such modes, or no such modes if δ � 0.47.

2.4. The ultimate fate of the lower-branch modes

These modes, which form on the lower-branch scaling, have wavenumbers of O(R−1)
when V is increased to O(1), according to the asymptotic behaviour (2.21) and the
scaling (2.11). In order to follow their further evolution as V is increased on this new
scaling we need to derive a new governing equation. This is achieved by taking the
limit R → ∞ of the circular Orr–Sommerfeld equation (1.6) but with αR remaining
O(1), (implying that α → 0). Thus, the modes are governed by

(U0 − c)(φ′′ −φ′/r)− (U ′′
0 −U ′

0/r)φ = (iαR)−1(φiv −2φ′′′/r +3φ′′/r2 −3φ′/r3), (2.66)

with

φ = φ′ = 0 on r = δ, r = 1. (2.67)

The neutral curves for given αR, V and δ are computed using the same method
(a continuation approach using Chebyshev collocation and Newton’s method) to be
described in § 3 when we solve the full circular Orr–Sommerfeld equation. Figure 11
shows a first set of what may be termed ‘cutoff curves’, as beyond a certain value of
V there is no instability on this lengthscale. It can be seen that the cutoff velocity
Vc increases as δ decreases until δ 
 0.5. Below this value of δ, the cutoff curves
become closed, shrinking to a point at about δ 
 0.428, a phenomenon also reported
by Gittler (1993). The significance of the curves being closed will be explained when
we move on to solve the circular Orr–Sommerfeld equation at finite values of R in
§ 3. The vanishing of the modes at this value of δ is consistent with the earlier finding
that no lower-branch modes exist when δ � 0.52, apart from the one that moves on
to the hybrid scaling and therefore experiences cutoff before V becomes O(1).

As in the case of planar Poiseuille–Couette flow (Cowley & Smith 1985), there is a
second set of cutoff curves for a range of values of δ – these represent the continuation
of the second set of modes created on the lower branch scaling. The curves are shown
in figure 12 on a logarithmic scale. The cutoff velocities involved are much smaller than
for the first pair of modes and the typical values of αR are much larger, typically of
order 109, suggesting that these modes may only exist at very large Reynolds number.
We will indeed see that this is the case when we carry out our finite-Reynolds-number
computations.

Based on all our asymptotic analysis, we present schematic diagrams of the regions
of instability at large Reynolds number in figure 13. Of course, this picture does not
tell the whole story: for example, we have no information about the critical values of
R for each unstable region, and there may be neutral curves that close up at finite R

that would not be found by this asymptotic approach. To obtain the full picture we
need to complement our asymptotic findings with computations at finite Reynolds
number.
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Figure 11. The first set of neutral stability ‘cutoff’ curves from the numerical solution
of (2.66) for various values of δ.

Figure 12. The second set of ‘cutoff’ curves from the numerical solution of (2.66) for
various values of δ.
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Figure 13. Sketches of the stability diagram at high Reynolds number, based on the
asymptotic analysis of § 2. The shaded regions are unstable.
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3. Finite-Reynolds-number numerical solutions
In this section, we solve the circular Orr–Sommerfeld equation numerically, guided

by our asymptotic results, but mindful that they only provide a partial picture of the
stability properties of this flow. We describe the numerical method used here first and
then describe the numerical results and how they fit in with our earlier asymptotic
findings.

3.1. Numerical method

In order to solve (1.6) and determine neutral curves for given values of inner cylinder
velocity V, radius ratio δ and Reynolds number, we apply a collocation method using
Chebyshev polynomials; this appears now to be the standard approach for solving
this type of eigenvalue problem owing to its simplicity, speed and accuracy. The
reader is referred to Gottlieb, Hussaini & Orszag (1984) for a full discussion of the
theory and to Khorrami, Malik & Ash (1989) or Schmid & Henningson (2001) for
the main details. The idea is that the function φ is expanded in a series of Chebyshev
polynomials Tn as

φ =

M+1∑
n=1

anTn−1(ξ ), r = 1
2
((1 + δ) − (1 − δ)ξ ),

where ξ is evaluated at the Gauss points ξj = cos(π(j − 1)/M), j = 1, . . . , M + 1.

The expression for φ is substituted into (1.6), and evaluated at the interior points
j =3, . . . , M − 1. The boundary conditions are also written in Chebyshev form, giving
us a total of M + 1 equations which can be expressed in matrix form as

Ba = λCa where a = (a1, a2, . . . , aM+1)
T , λ = −iΩ, Ω = αc, (3.1)

with B, C square matrices of dimension M +1, containing derivatives of the
Chebyshev polynomials, and also dependent on α2, αR and the basic flow parameters
δ and V. The boundary conditions are chosen to occupy the first two and last two rows
of the matrix B. The generalized eigenvalues λ from this problem can be found using
a package such as MatLab, and spurious solutions corresponding to the boundary
conditions can easily be identified and eliminated. The number of collocation points
used was sufficient to obtain six decimal places of accuracy in the computed values
of λ, and typically M =240 proved sufficient, although this was increased for large
values of R.

Since we wish to map out neutral curves in the (R, α)-plane, however, solving the
eigenvalue problem (3.1) at each (R, α) point is extremely time-consuming as all but
one of the eigenvalues is discarded at each level in an iterative process. It is much
more efficient to determine one point on the neutral curve in this fashion and then
use a continuation technique in which we find the next point on the neutral curve
directly by solving a nonlinear problem using Newton’s method. The procedure is
outlined below.

First, we split the eigenvector, and the matrices B and C, into their real and
imaginary parts by writing

a = x + i y, B = Br + iBi , C = Cr + iCi .

The matrix problem, for a given δ and V, can now be written as two real equations:

Br (α, R)x − Bi(α, R) y = Ω(Cr (α, R) y + Ci(α, R)x), (3.2a)

Bi(α, R)x + Br (α, R) y = −Ω(Cr (α, R)x − Ci(α, R) y), (3.2b)
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Figure 14. Neutral stability curves from the numerical solution of (1.6) for the case V = 0
and various values of δ.

where Ω is real for neutral modes. In addition, we are free to impose two conditions
on the eigenvector a. It is convenient to choose

xT x + yT y = 1, xT y = 0. (3.3a, b)

Finally, we wish to compute the solution at a small distance (ε̂ say) away from the
previous point (R0, α0) say, on the neutral curve. Thus we impose, for given ε̂:

(α − α0)
2 + (R − R0)

2 − ε̂2 = 0. (3.4)

This gives us a total of 2M + 5 equations (3.2a, b), (3.3a, b), (3.4) for the 2M + 5
unknowns x, y, α, Ω, R. Provided we have a good initial guess (supplied by the
solution at the previous point on the neutral curve), these nonlinear equations can be
solved efficiently using Newton’s method, since the Jacobian matrix can be calculated
explicitly. Typically, ε̂ was taken in the range 0.001 < ε̂ < 1, depending upon our
precise location on the curve and the values of the other parameters. The method can
easily be modified to generate curves of any given growth rate.

The cutoff problem of § 2.4 was solved in the same way except that in that case
only δ is fixed, with V allowed to vary and the matrices depend on the quantities αR

and V.

3.2. Numerical results

We start by presenting in figure 14 neutral curves in the (R, α)-plane for the case when
the inner cylinder is at rest. In this situation, the asymptotic analysis and numerical
results by previous workers predict a unique curve for each value of δ. We show curves
for a range of values of δ and it is evident that the critical Reynolds number Rcrit falls
as δ is decreased in the range 0.5 � δ < 1 and then rises rapidly with further decrease
in δ. Simultaneously, the typical wavelength of instability increases and the band of
unstable wavelengths decreases. At first sight, the behaviour of the critical Reynolds
number seems in contradiction with earlier results (Mott & Joseph 1968; Sadeghi &
Higgins 1991) where a monotonic decrease in Reynolds number was reported as δ was
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Figure 15. Neutral stability curves with δ = 0.9 for the following values of V : (a) 0;
(b) 0.001; (c) 0.003; (d) 0.00327.

decreased. The discrepancy, however, is purely due to the difference in definition of
R: we base our Reynolds number on outer cylinder radius and pressure gradient (as
this is appropriate for the thread injection application) while in the aforementioned
references the gap width and maximum velocity were used. The difference between
the definitions is most noticeable when δ is near unity and the curves are in perfect
agreement with previous work when allowance is made for this.

In figure 15, we concentrate on the case δ = 0.9 and investigate what happens to the
neutral curve as V increases. Our asymptotic analysis (see the sketch in figure 13) has
suggested that the following features should emerge from our computations: (i) we
should observe a splitting of the neutral curve at a certain value of V ; (ii) at a slightly
larger value of V another curve should form; (iii) of these three curves we expect one
to close up at finite Reynolds number at a critical value of V, (this is the curve that
forms on the hybrid scaling, § 2.2.3) and the other two should retreat to R = ∞ at O(1)
values of V (these are the cutoff curves in § 2.4). From the sequence of figure 15(a)–
15(d) we observe only a single neutral curve retreating to infinity. In order to uncover
the rest of the features anticipated above, we need to examine smaller non-zero values
of V at higher values of R. The higher values of R are achieved within the current
numerical scheme by employing a rescaling of the problem, and this is described in
Appendix B. The results are presented in figure 16 (with δ remaining equal to 0.9).
At very small V , a pocket of stability, forming at R = ∞, penetrates the neutral curve,
and advances to the left on the stability diagram, effectively slicing the neutral curve



196 A. G. Walton

Figure 16. Neutral stability curves with δ = 0.9 for the following values of V :
(a) 0.44 × 10−4; (b) 1.3 × 10−4; (c) 2.5 × 10−4; (d) 3.2 × 10−4.

in two. Simultaneously, a kink develops on the upper stability boundary; this is the
same phenomenon observed in the solution of the hybrid eigenrelation (figure 10).
We now see that there are multiple regions of instability: for example, in figure 16(b) at
R =9 × 1012 there are three separate regions of disturbance growth. As V is increased
further, the top curve splits into two, with one part moving to larger Reynolds
number while the other closes up. Simultaneously, the lower curve moves to longer
wavelengths. The top curve on figure 16(d) arises on the hybrid scaling while the
lower curve represents two of the modes that persist on the lower branch scaling.
Beyond a value of V 
 0.004, only the lower curve persists and it is this curve which
is captured in figure 15. Thus far, we have seen evidence of the hybrid modes and one
pair of lower-branch modes. There should be a second pair of lower-branch modes:
these do exist, but numerically only at extremely large values of R. Figure 17 shows
this second ‘lower-branch’ neutral curve: it forms within the stable intrusion (marked
with an ‘X’ on figure 16a) which itself forms within the original neutral curve. This
second curve only exists for a small range of values of V and retreats to R = ∞ in
accordance with the results of § 2.4. Although this second curve may be present at
other values of δ, we will not discuss it further as it seems to be of very little physical
significance.

We have seen from our results for δ = 0.9 that the stability diagram is quite
complicated for non-zero V, with neutral curves existing simultaneously on the
hybrid and lower branch scalings, but only at very large values of R and very small
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Figure 17. Neutral stability curves with δ =0.9 at large values of the Reynolds number,
from the numerical solution of (1.6) under the rescaling of Appendix B. Dot-dashed curves:
V = 0.35 × 10−4; solid curves: V = 0.38 × 10−4; dashed curves: V = 0.44 × 10−4. The flow is
unstable inside the ‘finger-like’ curves and outside the outer curves.

values of V. As δ is decreased, however, this complicated behaviour spreads to smaller
Reynolds numbers and exists over a larger range of values of V. To demonstrate this,
we present neutral curves for the case δ =0.55. Figure 18 shows the corresponding
neutral stability diagrams and how they alter as V is increased. A familiar pattern
is emerging: first, we have a unique curve for V = 0; then, at small non-zero V , a
stable intrusion spreads from right to left, eventually penetrating almost to the nose
of the curve and slicing it into two almost equal-sized smaller curves (figure 18d).
The top curve is the ‘hybrid curve’ and the bottom one is the ‘lower-branch curve’.
As V is increased further to 0.0125 (figure 18e), we see that the hybrid curve has
thinned substantially and is now closed; slightly beyond this value of V it disappears
completely leaving the lower-branch scaling governing the stability properties of the
flow. This curve then retreats to infinity at finite V as predicted in § 2.4, leaving the
flow linearly stable at all Reynolds numbers for all V beyond this critical value.
Although Sadeghi & Higgins report only single neutral curves at given δ and V there
is definite evidence in their figure 5 (δ = 0.5) that they are actually following two
separate curves in their numerical computations.

For values of δ in the range 0.45 � δ < 1, the behaviour of the neutral curves as
V is increased is as described above. Some modifications occur, however, when δ is
decreased further. This is connected with our observation that in the ‘cutoff’ results
of § 2.4 the cutoff curve in the (V, αR)-plane becomes closed at δ 
 0.43. Suppose that
the range of V over which there is instability is V1 � V � V2. This means that the
lower branch curve must actually be closed at finite Reynolds number for V < V1;
it then ‘attaches to infinity’ at V = V1, and retreats to R = ∞ in the normal way
as V → V2−. We can witness these events occurring numerically in the sequence of
figure 19(a)–19(g) for δ =0.43. The difference to the previous results at larger δ is
that the incision is formed towards the lower branch of the neutral curve, and as a
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Figure 18(a–d). For caption see facing page.

result a closed curve is ‘sliced off’ (figure 19d). At this stage, it is the upper hybrid
curve which dominates, in contrast to the situation at larger δ. We see that when
V has increased to 0.02, the lower curve has apparently become attached to infinity
and is retreating rapidly in that direction, leaving the hybrid scaling to govern the
stability properties. This curve eventually disappears at finite Reynolds number when
V 
 0.03, leaving a linearly stable flow at all Reynolds numbers.

Below δ 
 0.42, the analysis of § 2.4 predicts no cutoff curves and so we would
expect our finite-Reynolds-number calculations to yield a single hybrid-scaled curve
at given V. This is indeed the case: for δ = 0.4, we show in figure 20, a series of neutral
curves for increasing V. There is now no intrusion forming and therefore no curve-
splitting occurs. The upper- and lower-branch scalings for V = 0 simply unite on the
hybrid scaling (as indicated schematically in figure 13) to form a unique neutral curve
that eventually closes up at finite Reynolds number and disappears when V 
 0.035.

It can be seen that the disappearing point is fairly close to the nose of the V = 0
curve; there is no retreat to larger values of R in this case. For values of δ less than
0.4, the sequence of events as V increases remains the same as shown in figure 20.

The case shown in figure 18(d) when δ = 0.55, V = 0.01 is particularly interesting.
Here we have two distinct neutral curves of similar widths and with similar critical
Reynolds numbers. It is found, however, that the manner in which growing modes
inside each of these curves extract energy from the basic flow is rather different. This
can be demonstrated by computing the product of the Reynolds stress and the basic
velocity gradient and examining its radial distribution for each mode. If we write the
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5

Figure 18. Neutral stability curves with δ = 0.55 for the following values of V :
(a) 0; (b) 0.004; (c) 0.005; (d) 0.01; (e) 0.0125; (f ) 0.03; (g) 0.0425.

energy equation in the standard form

dI1

dt
= I2 + R−1I3,

Drazin (2002), then the term of interest here is I2, which in our notation is given by

I2 =
π

α2
exp(2αcit)

∫ 1

δ

E(r) dr, E(r) =
U ′

0(r)

r
Im(φ∗φ′(r)).

When E > 0, energy is extracted from the basic flow by the disturbance, whereas
if E < 0, energy is transferred back to the basic flow. To illustrate the different
distributions we choose the fastest growing modes inside the two neutral curves for
δ = 0.55, V = 0.01 at R = 107. These have the following properties:

α1 
 1.73, c01 
 0.013 + 9.6 × 10−5i, α1c01i 
 1.66 × 10−4,

α2 
 3.55, c02 
 0.020 + 9.2 × 10−5i, α2c02i 
 3.25 × 10−4.

The subscript 1 refers to a growing mode within the lower curve (a ‘lower-branch’
mode). It is evident that in this case the ‘hybrid mode’ within the upper curve
(subscript 2) has the larger growth rate of the two. In figure 21, we plot E versus r

for each of these modes. It can be seen that for the lower-branch mode, E < 0 near
the moving wall and energy is lost by the disturbance. The energy flow is in the
opposite direction near the outer wall of the annulus and the profile is fairly symmetric
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Figure 19(a–d). For caption see facing page.

about the centre of the gap. The hybrid mode, by contrast, gains most of its energy
near the inner cylinder and also extracts a small amount of energy from the basic
flow near the outer wall. This latter energy distribution seems to be typical of modes
for which the real part of the wavespeed exceeds significantly the value of the inner
wall velocity V, while the E-profile of the lower branch mode is common to modes
for which the real part of V − c is positive or close to zero. These observations are
consistent with the findings of Sadeghi & Higgins (1991).

Our finite-Reynolds-number results may be summarized as follows.
(i) For V = 0, there is a unique neutral curve for all values of δ with the critical

Reynolds number smallest for δ 
 0.5.

(ii) The effect of increasing V is to increase Rcrit from its V = 0 value. At sufficiently
large V (for all values of δ), the flow is linearly stable at all R.

(iii) As V is increased for δ in the range 0.425 � δ < 1, the neutral curve splits into
two curves. Growing modes inside the top curve extract most of their energy from
the basic flow near the inner cylinder, while modes inside the lower curve gain their
energy near the outer cylinder. The lower curve, governed by the lower-branch scaling,
retreats to R = ∞ at finite V, while the upper curve (on the hybrid scaling) closes
up at finite R, eventually disappearing at a critical value of V which may be more
or less than the value of V at which the lower curve disappears. Broadly speaking,
when 0.45 � δ < 1 and V is O(1), the lower curve is the more important (e.g. possesses
larger growth rates, applies over a larger range of wavelengths, has a lower value of
Rcrit), while for δ < 0.45 the upper curve dominates.

(iv) For δ � 0.42, only the upper hybrid curve exists.
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Figure 19. Neutral stability curves with δ =0.43 for the following values of V : (a) 0;
(b) 0.004; (c) 0.005; (d) 0.008; (e) 0.02; (f ) 0.027; (g) 0.0285.

Figure 20. Neutral stability curves with δ = 0.4 for: (a) V = 0 (dashed), V = 0.015 (solid);
(b) outer to inner: V = 0.028, 0.031, 0.034.

(v) In addition, for sufficiently large δ, there is also another neutral curve on the
lower-branch scaling which forms inside the intrusion into the original curve. This
curve only exists over a small range of V , however, and at extremely large Reynolds
number: therefore, we expect it to be of very little practical importance.

The asymptotic and numerical results presented here have focused on the case
of V > 0. In Appendix C, we show how the analysis must be altered when V < 0.

Although there are modifications to the asymptotic analysis, the overall conclusion is
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Figure 21. The radial distribution E(r) of the energy supply for the fastest growing modes
with δ =0.55, V =0.01 and R =107.

the same as for V > 0, namely, that over a large range of δ there are, for a given V,

two neutral curves with the properties discussed above, although in the V < 0 case,
the hybrid curve appears to be much less significant.

In the final section, we discuss the relevance of these results to the medical
application of thread injection and we show how the linear neutral modes found
here connect to their nonlinear counterparts as the amplitude of the perturbation is
increased.

4. Discussion
4.1. Nonlinear stability and the application to thread injection

The basic circular Poiseuille–Couette flow studied in this paper is relevant to the
thread injection of medical implants. In this newly devised surgical technique, a
thread of porous material (representing the inner cylinder) is injected within a fluid
held in a cylindrical container. For more details of this process, the reader is referred
to Frei et al. (2000). The typical Reynolds number at which instability was reported in
their experiments was about 3 × 104 using the non-dimensionalization adopted in the
present paper, while the corresponding Rcrit predicted by the linear analysis is about
4 × 105. There is therefore an order of magnitude disagreement between theory and
experiment, suggesting that nonlinear effects play an enhanced role in the transition
process for this flow, presumably in a similar way to that for the flow through a single
pipe.

In Walton (2003), with the medical application in mind, the nonlinear stability of
this basic flow was studied asymptotically at large values of the Reynolds number
and amplitude-dependent nonlinear neutral modes were found for an O(1) range of
values of V and δ with V > c. The values of V for which nonlinear modes exist are
much larger than the linear cutoff velocities found here, while the structure of the
modes is similar to that for the hybrid scaling (where V < c) except that the upper
critical layer is now nonlinear and has moved out into the core region.
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A natural question to ask is how the present linear neutral curves connect to
the nonlinear modes as the disturbance amplitude is increased. In fact, the latter
structure can be found to be a natural nonlinear continuation of the linear regime
by reconsidering the hybrid eigenrelation (2.63) for an enhanced disturbance size. It
is well known (Benney & Bergeron 1969; Haberman 1972) that as the perturbation
amplitude increases, the phase shift φ across the critical layer decreases in magnitude
(essentially the ‘π’ in the denominator of (2.63) is replaced by φ). It is then clear
from (2.63) that the effect of reducing φ is to decrease the values of the wavespeed
correction c1 on the two branches of the neutral curve in figure 10, i.e. for weakly
nonlinear perturbations, the mode wavespeed approaches the inner cylinder velocity
V from below. As φ → 0, a balance is re-established between the normal velocity
perturbations within the inviscid shear layer II+ and the viscous wall layer III+.

By examining the expressions (2.39) and (2.52), we see that an order of magnitude
balance is possible provided that

ε6 α0P̂0

c0(α0c0)1/2
∼ ε5α0P̂0c0φ, (4.1)

with ε = R−1/13. For the linear critical layer, φ is O(1) and therefore the terms above
differ in magnitude by a factor ε, as discussed in § 2.2.3. On the hybrid scaling we
have

c0 ∼ V 0, α0 ∼ V
1/2

0 , (4.2)

so that (4.1) can be rewritten as

ε ∼ V
11/4

0 φ. (4.3)

The dynamics of the weakly nonlinear critical layer are discussed in Appendix D
where it is established that

φ ∼ α0
−1c

−3/2
0 ∆

−3/2
as ∆ → ∞, (4.4)

for disturbances of amplitude ∆ = ε6∆. Writing (4.4) in terms of V 0 and substituting
into (4.3) we obtain the amplitude–velocity balance

∆ ∼ ε−2/3V
1/2

0 .

The strongly nonlinear neutral mode structure referred to earlier applies for O(1)
cylinder velocities V, i.e. V 0 ∼ O(ε−2). In this setting, the appropriate disturbance
amplitude is therefore

∆ = ε6∆ ∼ ε16/3V
1/2

0 ∼ R−1/3.

This is precisely the amplitude of the nonlinear neutral modes studied in Walton
(2003), and they possess O(1) wavenumbers and wavespeeds in view of the scalings
(4.2), (2.49), with a phase shift across the critical layer φ ∼ O(R−1/2), from (4.4). Thus,
as the amplitude of the disturbance is increased, the upper and lower branches of the
hybrid neutral curve (figure 10) ‘lift-up’ from the zero-amplitude plane and the curve
extends to O(1) values of V, where there is now a nonlinear cutoff velocity on this
new scaling. It is evident from this that the effect of nonlinearity is to increase the
range of instability of the basic circular Poiseuille–Couette flow and it would appear
to be these nonlinear effects, through their enhanced correction to the mean flow, that
hold the key to explaining the experimentally observed instabilities in this flow.

Of course, in practice, there are many other effects that must be taken into account
when attempting to describe the instability of thread–annular flow and our results
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should be regarded as merely a first step in describing the phenomenon. In reality,
the thread will possess some flexibility and its position within the outer cylinder
may not always be concentric: both these factors could affect the instability process
considerably. Other important issues are whether the thread is sufficiently long for
the basic flow to have become fully developed in space and whether the injection
process occurs over a long enough time interval for full temporal evolution of the
flow to be achieved. Finally, the importance of non-symmetric disturbances needs to
be addressed more fully, an area we now discuss in a little more detail.

4.2. Non-symmetric disturbances

Although this paper has concentrated on the axisymmetric linear stability of
Poiseuille–Couette flow, the stability to asymmetric disturbances of the form
exp(iα(x − ct) + iNθ) with N an integer, is also of theoretical and practical interest,
as remarked above. Numerical calculations were carried out by Sadeghi & Higgins
(1991), and, appropriately rescaled, are consistent with results obtained by the present
author. The main conclusions are as follows. For a given δ, the effect of increasing V

is stabilizing (as in the axisymmetric case) and there is a cutoff velocity which once
again can be calculated from the stability equations in the limit R → ∞, αR → O(1).
The N =1 mode is found to possess a slightly lower critical Reynolds number than
the corresponding axisymmetric disturbance, while higher modes are progressively
more stable and possess smaller cutoff velocities. As in the N = 0 case, the effect
of decreasing δ is to at first make the flow more unstable by lowering the critical
Reynolds number. For N = 1, the flow is least stable when δ 
 0.2, with further
decrease in δ leading to a rapid increase in Rcrit. For higher values of N , the critical
Reynolds number is larger, with the most unstable radius ratio tending towards unity
as N is increased.

In contrast to the axisymmetric case, there is no numerical evidence for the existence
of multiple neutral curves. The added complexity of the governing equations for N �= 0
makes it difficult to perform the type of asymptotic analysis that proved so successful
in predicting multiple neutral curves for the N = 0 case. If there is more than one
curve at given V and δ, it seems likely that the curve splitting occurs at very small
V and at high Reynolds number, rendering the secondary curve of little practical
importance in the non-symmetric case.

The author wishes to express his thanks to Dr G. Moore for suggesting the
continuation approach outlined in § 3.1 and the comments of the referees are
acknowledged gratefully.

Appendix A. The solution of the upper-branch eigenrelation
In § 2.2.2, we showed that the upper-branch scaling leads to modes governed by

equations (2.42) and (2.46). To demonstrate that there is only one mode on this
scaling (for a given δ and V0), it is convenient to define the parameter

µ = 1 − V0/c0 (> 0). (A 1)

Equation (2.42) can then be rewritten as

α2
0 =

c0

I (δ)

(
λ

(0)
+ +

λ
(0)
− µ

δ

)
, (A 2)
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while, after some manipulation, (2.46) can be recast in the form

c
11/4
0 = C1(µ)/C2(µ), (A 3)

where

C1(µ) =
(I (δ))1/4

21/2

(
λ

(0)
+ +

λ
(0)
− µ

δ

)−1/4 (
λ

(0)
+ +

(
λ

(0)
−

)2
µ−1/2

δλ
(0)
+

)
,

C2(µ) =
2(1 − δ2)π

|ln δ|

(
1(

λ
(0)
+

)2
+

µ2

δ3λ
(0)
+ λ

(0)
−

)
.

Thus, for a given δ and µ, the unique value of c0 can be found from (A 3), with α0

then following from (A 2). Finally, the corresponding value of V0 can be obtained
from (A 1). This procedure is repeated for various values of δ, leading to the results
presented in figure 8.

Appendix B. The numerical solution of the cylindrical Orr–Sommerfeld
equation in the small-gap limit

In order to elicit the fine detail of the neutral curve for values of δ close to unity,
it proves necessary to compute solutions to the cylindrical Orr–Sommerfeld equation
(1.6) at very large values of the Reynolds number and at very small non-zero values of
the inner cylinder velocity V . In this Appendix, we show how, by a suitable rescaling
of the problem, this can be achieved accurately. At the same time, this rescaling allows
us to compare our results in the limit δ → 1 with those of Cowley & Smith (1985) for
planar Poiseuille–Couette flow where the basic flow is given by

UCS = 3
2
(1 − ξ 2) + (1 + ξ )VCS, (−1 � ξ � 1).

In order to achieve these aims, we first define 2πQ0 to be the undisturbed flux
through the annulus when V = 0, i.e.

Q0 =

∫ 1

δ

r

(
1 − r2 + (δ2 − 1)

ln r

ln δ

)
dr.

Next, consider the linear stability of the basic flow

Û0 =
(1 + V̂ )

Q0

U0

(
r,

3Q0V

2
, δ

)
,

where U0(r, V , δ) is the basic flow given in (1.2), and V̂ is related to V by

V =
4V̂

3(1 − δ)(1 + V̂ )
.

Suppose that the associated linear neutral wave for a given V and δ has wavenumber α̂

at Reynolds number R̂. It is clear that this corresponds to an instability of the original
profile (1.2), with inner cylinder velocity 3Q0V/2, in which the neutral wavenumber
is unchanged, but the Reynolds number is given by

(1 + V̂ )R̂

Q0

.
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This quantity will be considerably larger than R̂ , since Q0 will be small when δ is
close to unity. In addition, the corresponding cylinder velocity will be much smaller

than V for the same reason. Thus, by solving the Û0-instability problem, we can
obtain the solution to the U0-problem at the desired large Reynolds numbers and
small cylinder velocities.

In order to compare our results with the planar case in the limit δ → 1, we consider

the solution of the Û0-instability problem, and perform the rescaling

U 0 = (1 − δ)Û0, α = 1
2
(1 − δ)α̂, R = 1

2
R̂, c = (1 − δ)ĉ.

We can then show that

U 0 → UCS as δ → 1, with VCS ≡ V̂ .

Additionally, in this limit, the circular Orr–Sommerfeld equation (1.6) reduces to its
planar counterpart:

(U 0 − c)(φ′′ − α2φ) − U
′′
0φ = (iαR)−1(φiv − 2α2φ′′ + α4φ),

with a prime denoting differentiation with respect to ξ. Thus, α and R are the
wavenumber and Reynolds number of the corresponding two-dimensional disturbance
of plane Poiseuille–Couette flow. We were able to reproduce Cowley & Smith’s results
in this limit and this rescaling of the problem was particularly useful for finding the
second set of ‘cutoff curves’ shown in figure 12.

Appendix C. Solutions for negative inner cylinder velocities
Although of less relevance to the thread-injection problem, we discuss here for

completeness the solution of the axisymmetric linear stability problem when V < 0.

(Equivalently this can be regarded as the situation when the inner cylinder is at rest
and the outer cylinder has positive velocity).

For this case, since the neutral wavespeed lies between the minimum and maximum
flow velocities, we must allow for the possibility that c0 < 0, and this brings out some
new features in the asymptotic analysis. We discuss briefly in turn how the solutions
of the lower, upper and hybrid eigenrelations are altered from those described in the
main text (where V > 0), and then we present some results at finite Reynolds number.

(i) Lower branch. The scalings are exactly as derived in § 2.2.1, leading to the
eigenrelation (2.19), but in view of the fact that c0 could be negative, with c0 − V0

remaining positive, we need to examine the range −∞ <s+ < ∞, s− � 0. Numerical
analysis of (2.19) shows that, for small negative V0, there is a unique solution and, for a
range of δ near unity, this is supplemented by a further two solutions that are created
at finite negative V0. As V0 → −∞, all three solutions persist, with s+ and s− remaining
finite. As in the case V > 0, these solutions acquire long-wave characteristics, with
α ∼ O(R−1), and exist up to O(1) negative values of V, forming the upper and lower
branches of one neutral curve and the lower branch of a second curve. The latter
curve is much more significant, in practice, as it exists over a wider range of values
of δ and turns out to possess a much smaller critical Reynolds number. The origin
of the upper branch of this second curve will be found subsequently (recall that for
V > 0 there were four solutions of this type, providing the upper and lower branches
of both curves).

In addition to these ‘finite-s’ modes, there are two other modes that need to be
discussed. The first of these has s− → ∞, s+ → s0 as V0 → −∞ and represents the
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situation where the lower critical layer moves away from the inner cylinder surface.
This is the exact opposite situation to that described in the main text, and the
asymptotic behaviour, analogous to (2.25), (2.26) is found to be

V0 ∼ −
(

δI (δ)

λ
(0)
−

)
α2

0, c0 ∼
(

λ
(0)
−

δI (δ)

)−1/6 (
λ

(0)
+

)2/3
s0(−V0)

−1/6, as V0 → −∞.

This matches to the hybrid mode scaling, forming the lower branch of a neutral curve,
in exactly the same way as indicated in the main text for V > 0.

Finally, we have a mode for which s+ → −∞, s− → ∞ as V0 → −∞. No analogous
mode exists for V > 0, but a similar solution was found by Cowley & Smith (1985)
for plane Poiseuille–Couette flow. However, the curvature effects here lead to a quite
different asymptotic behaviour from that outlined in their paper. Analysis of (2.19)
in this limit shows that

V0 ∝ −α2
0, c0 ∼

1 +

(
λ

(0)
−

λ
(0)
+

)4

1

δ2

−1

V0, as V0 → −∞.

The resulting shorter-wavelength mode moves on to the upper-branch scaling to be
discussed next.

(ii) Upper branch. The scales are precisely as in § 2.2.2, but now two modes are
possible, corresponding to the continuation of the V = 0 upper-branch mode for
which µ in Appendix A is positive, and the continuation of the final lower-branch
mode discussed above, where µ < 0. For the first of these modes, the asymptotic
behaviour is found to be

α0 ∝ (−V0)
1/2, c0 ∝ (−V0)

−9/2, as V0 → −∞,

cf. (2.47), and this can be shown to match to the hybrid scaling where it forms the
upper branch of a neutral curve to be discussed shortly.

The second mode exists over a finite negative range of µ. Since c0 < 0 for this mode,
the upper branch analysis of § 2.2.2 needs to be modified slightly (in particular, the
expression for m+ in (2.39) is adjusted appropriately). The modified eigenrelation can
be solved in a similar way to that discussed in Appendix A, and numerical solutions
and asymptotic analysis show that as V0 is decreased through negative values, the
wavenumber at first rises, reaches a maximum and then tends to zero, according to

α0 ∝ (−V0)
−5 as V0 → −∞.

Thus, when V0 increases to O(R2/11), i.e. V becomes O(1), the wavenumber α has
decreased to O(R−1) and has evolved into a long wave, forming the upper branch of
the second neutral curve, discussed in (i), that exists at O(1) negative values of V .

(iii) Hybrid modes. The scales are as discussed in § 2.2.3 and allow us to describe
the situation where the lower layer becomes of upper-branch type while the upper
layer retains a lower-branch character. As remarked earlier, this is the exact opposite
scenario to the V > 0 case and is caused by the fact that when V is decreased through
negative values, the maximum flow velocity moves ever closer to the upper wall. The
analysis proceeds in a similar way to that outlined in the main text and leads us to
the eigenrelation

(−V 0)
13/6 = −

(
λ

(0)
−

δI (δ)

)−1/6 (
λ

(0)
+

)5/3
δ

π

(
2λ(10)

−

λ
(0)
−

− 1

δ

)−1

Im(g(s+)),
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Figure 22. Neutral stability curves with δ = 0.55 for (a) V = −0.001; (b) V = −0.002.

cf. (2.63). Numerical solutions of this relation indicate, for each value of δ, the
existence of a cutoff velocity on the hybrid scaling. In general, the magnitudes of the
cutoff velocities are rather smaller than their V > 0 counterparts.

(iv) Solution at finite Reynolds number. On the basis of the asymptotic analysis just
presented, we expect that finite-Reynolds-number calculations will generally produce
two neutral curves in the (R, α)-plane: the upper one representing the hybrid mode
scaling and the lower one characteristic of a long-wave disturbance evolving from the
lower branch scaling. As an example, we show in figure 22 the results of a numerical
calculation for δ = 0.55 and various negative values of V. If we compare with the
results for V > 0 (figure 18), we see that (i) the stable intrusion is formed as before,
but when V = −0.001 (figure 22a), it is only present at very high Reynolds number
(R > 6 × 1010) and extends over only a very narrow band of wavenumbers; (ii) as
−V is increased, a second neutral curve is formed (figure 22b) with the formation
occurring at a much smaller magnitude of inner cylinder velocity and with a much
larger critical Reynolds number than for the V > 0 case; (iii) further increase in −V

leads to the retreat of this second curve. On the basis of these observations, it appears
that the second curve plays only a minor role in the stability properties of the flow.
As a consequence, the cutoff velocity at any value of δ can be calculated from the
‘reduced’ Orr–Sommerfeld problem described in § 2.4. These cutoff velocities have
been calculated previously by Gittler (1993) and the main feature is that they are
larger in magnitude than their V > 0 counterparts. In addition, cutoff velocities exist
for all values of δ, i.e. there is no analogue of the closed-curve behaviour shown in
figure 11(b) for V > 0.

The imposition of a negative inner cylinder velocity therefore has the effect of
making the flow more unstable relative to a positive cylinder velocity of the same
magnitude. The stationary configuration, however, is always the most unstable for a
given radius ratio.

Appendix D. The weakly nonlinear critical layer on the hybrid scaling
Here, we investigate the effect on the critical layer in the hybrid region (where

ε =R−1/13) of increasing the disturbance size. The balance in this layer is between
viscous effects and the inertial operator (U0 − c)∂/∂x, with ∂/∂x ∼ O(ε). If the variable
ζ+ (= λ

(0)
+ Y+ − c0) is of order q say, then (U0 − c) ∼ O(ε2q) and we have the inertial-

viscous balance ε3q ∼ R−1(ε2q)−2, leading to the critical-layer thickness q ∼ ε2 (relative
to the shear layer II+).
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Having established the thickness of the critical layer, we can begin to formulate the
velocity and pressure expansions within it. First, we note that the basic flow assumes
the form

U0 = ε2c0 + ε4λ
(0)
+ ỹ + · · · + ε8λ

(10)
+ ỹ2 + · · · . (D 1)

Here, ỹ is the O(1) variable within the critical layer (with r = 1 − ε2c0/λ
(0)
+ − ε4ỹ). In

the linear critical layer, the streamwise perturbation expansion is

∆û = −∆A0λ
(0)
+ + ∆ε2ucl + · · · , (D 2)

while for the normal velocity we have

∆v̂ = −∆ε3iα0c0A0 − ∆ε5iα0A0λ
(0)
+ ỹ − ∆ε7vcl + · · · ,

using the solutions established in (2.32a, b), (2.34). Weakly nonlinear effects come into
play when ∆ ∼ ε6∆, with ∆ of O(1), for then the second term in the perturbation
expansion (D2) becomes comparable with the quadratic term in the basic flow
expansion (D1). Then, from substitution into the Navier–Stokes equations (1.1), the
critical-layer problem can be posed in the streamfunction form

α0λ
(0)
+ ỹ

∂3ψ

∂ξ̃∂ỹ2
− ∆α0c0A0 sin ξ̃

∂3ψ

∂ỹ3
=

∂4ψ

∂ỹ4
, (D 3)

where ucl = ∂ψ/∂ỹ, vcl = −α0∂ψ/∂ξ̃ and ξ̃ =α0(x − c0t). The appropriate matching
conditions to the surrounding shear region can be shown to be

∂ψ

∂ỹ
∼ λ

(10)
+ ỹ2 + ∆

1/2
λ̂+ỹ − ∆A0λ

(0)
+ c0

(
2λ(10)

+

λ
(0)2
+

+
1

λ
(0)
+

)
(ln ỹ)(cos ξ̃ ) as ỹ → +∞,

∂ψ

∂ỹ
∼ λ

(10)
+ ỹ2 + ∆

1/2
λ̂−ỹ − ∆A0λ

(0)
+ c0

(
2λ(10)

+

λ
(0)2
+

+
1

λ
(0)
+

)
(ln |ỹ| cos ξ̃ − J (ξ̃ )) as ỹ → −∞,

with the phase shift φ given by

φ =
1

π

∫ 2π

0

J (ξ̃ ) sin ξ̃ dξ̃ .

Here, the quantity λ̂+ − λ̂− represents the unknown jump in vorticity across the critical

layer. This can be related to the phase shift by integrating (D3) with respect to ξ̃ and
ỹ and applying the matching conditions. This leaves

φ =
2

α0A
2
0c

2
0λ

(0)
+

(
2λ(10)

+

λ
(0)2
+

+
1

λ
(0)
+

)−1

(λ̂+ − λ̂−)∆
−3/2

.

In general, the determination of the vorticity jump, and hence the phase shift,
is a numerical problem. Our interest here, however, lies in the limit ∆ → ∞. In this
situation, a perturbation approach to solving (D3) (Smith & Bodonyi 1982) establishes
that

λ̂+ − λ̂− = λ
(10)
+

(
−A0c0/λ

(0)
+

)1/2
C(1),
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where C(1) 
 −5.516, from numerical computation. Thus, in the limit ∆ → ∞, the
phase shift is given by

φ ∼ 2λ(10)
+ C(1)

α0

(
−A0λ

(0)
+

)3/2
c

3/2
0

(
2λ(10)

+

λ
(0)2
+

+
1

λ
(0)
+

)−1

∆
−3/2

,

and this is the result used in § 4.
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